Permutation and Combination

Module-4

Permutation Word Problems

Simple and Easy Method

Recap

Fundamental Principle of Counting states that

 "If an event can occur in \mathbf{m} different ways, following which another event can occur in \mathbf{n} different ways, then the total number of occurrence of the events in the given order is
mxn."

The notation ' n !' represents the product of first n natural numbers

A Permutation is an arrangement in a definite order of number of objects taken some or all at a time

For a natural number ' n '

$$
\begin{aligned}
\mathrm{n}! & =\mathrm{n}(\mathrm{n}-1)! \\
& =\mathrm{n}(\mathrm{n}-1)(\mathrm{n}-2)! \\
& =\mathrm{n}(\mathrm{n}-1)(\mathrm{n}-2)(\mathrm{n}-3)!
\end{aligned}
$$

Theorem 1

The number of permutation of \mathbf{n} different objects taken \mathbf{r} at a time, where $\mathbf{0}<\mathbf{r} \leq \mathrm{n}$ and the objects do not repeat is ${ }^{n} \mathrm{P}_{\mathrm{r}}$

Theorem 2
The number of Permutations of n different objects taken rata time, when repetition is allowed is n^{r}

Theorem 3

The number of permutations of n objects ,where p objects are of the same kind and the
rest are all different $=\frac{n!}{p!}$

Theorem 4

The number of permutations of n objects, where p_{1} objects are of one kind, p_{2} are of second kind,.... p_{k} are of $k^{t h}$ kind and the rest , if any are of different kind is $\frac{n!}{p_{1!p_{2}!\ldots p_{k}!}}$

Find the number of arrangements of the letters of the word COFFEE.

MALAYALAM

TOTAL $=$ M comesA comesL comes-

Question 10:

In how many of the distinct permutations of the letters in MISSISSIPPI do the four I's not come together?

Answer 10:
In the given word MISSISSIPPI, I appears 4 times, S appears 4 times,
P appears 2 times, and M appears just once.

M S	S S	S	P	P I I I

4 I's do not come together
$=34650-840=33810$

Permutations continued

In how many ways can 4 red, 3 yellow and 2 green discs be arranged in a row if the discs of the same color are indistinguishable ?

Sol: Total number of discs are $4+3+2=9$. Out of 9 discs, 4 are of the first kind (red), 3 are of the second kind (yellow) and 2 are of the third kind (green).
Thus number of permutation is:

$$
\frac{9!}{4!3!2!}=1260
$$

Find the number of the arrangement of all nine letters of word SELECTION in which the two letters E are not next to each other.

- Solutions:

Total no. of arrangements - No. of arrangements with two E next to each other
$=\frac{9!}{2}-8$!
$=141120$

Find number of arrangements of the letters of the word PENALTY such that vowels come together.

PENALTY

PR|LTY|
 123456

In how many different ways can the letters of the word CORPORATION be, arranged so that the vowels always come together?

Permutation Word Problems.........

Example

Find the number of arrangements of the letters of the word INDEPENDENCE. In how many of these arrangements,
(i) do the words start with P

12 letters,

N appears 3 times,

$$
\text { E appears } 4
$$

D appears 2 times
The required number of arrangements:

$$
\frac{12!}{4!3!2!}=1663200
$$

remaining 11 letters. Therefore, the required number of words starting with P are

$$
\frac{11!}{4!3!2!}=138600
$$

(ii) do all the vowels always occur together?

INDEPENDENCE.

There are 5 vowels in the given word, which are 4 Es and 11. Since, they have to always occur together, we treat them as a single object EEEE for the time being. This single object together with7 remaining objects will account for 8 objects. These 80 bjects, in which there are 3Ns and 2 Ds, can be rearanged in

$$
\frac{8!}{3!2!}{ }^{\text {waps }}
$$

Corresponding to each of these arrangements, the 5 vowels E, E, E, E and l can be rearranged in

$$
\frac{8!}{3.2!} \times \frac{5!}{4!}=16800
$$

(iii) do all the vowels never occur together?
(iii) The required number of arrangements $=$ the total number of arrangements (without any restriction) the number of arrangements where all the vowels occur together.

$$
=1663200-16800=1646400
$$

(iv) do the words begin with I and end in P?

(iv) Let us fix I and P at the extreme ends (I at the left end and P at the right end). We are left with 10 letters. Hence, the required number of arrangements

$$
\frac{10!}{4!3!2!}=12600
$$

Example: How many words can be formed with the letters of the word 'OMEGA' when:
(i) ' 0 ' and ' A ' occupying end places.

- (ii) 'E' being always in the middle
- (iii) Vowels occupying odd-places
- (iv) Vowels being never together.
- Ans.
- (i) When ' O^{\prime} and ' A ' occupying end-places
- \Rightarrow M.E.G. (OA)
- Here $(O A)$ are fixed, hence M, E, G can be arranged in 3 ! ways
- But $(0, A)$ can be arranged themselves is 2 ! ways.
- $\Rightarrow>$ Total number of words $=3!\times 2!=12$ ways.
(ii) When ' E ' is fixed in the middle
- \Rightarrow O.M.(E), G.A.
- Hence four-letter O.M.G.A. can be arranged in 4 ! i.e 24 ways.
- (iii) Three vowels $(0, E, A$,$) can be arranged in the odd-places \left(1^{\text {st }}, 3^{\text {rd }}\right.$ and $\left.5^{\text {th }}\right)=3$! ways.
- And two consonants (M, G,) can be arranged in the even-place
$=2!$ ways
- \Rightarrow Total number of ways $=3!\times 2!=12$ ways.
- (iv) Total number of words $=5!=120!$
- If all the vowels come together, then we have: (O.E.A.), M, G
- These can be arranged in 3 ! ways.
- But ($0, E$ E. A.) can be arranged themselves in 3 ! ways.
- \Rightarrow Number of ways, when vowels come-together $=3!\times 3$!
- = 36 ways
- \Rightarrow Number of ways, when vowels being never-together
- $=120-36=84$ ways.

Find the number of words with or without meaning which can be made using all the letters of the word AGAIN .If these words are written as in a dictionary, what will be the $50^{\text {th }}$ word?
Solution There are 5 letters in the word AGAIN, in which A appears 2 times. Therefore, the required number of words $=\frac{5!}{2!}$ $=60$

TOTAL $=\mathbf{2 4 + 1 2 + 1 2 = 4 8}$
WHAT'S $\mathbf{4 9}^{\text {TH }}=\mathbf{N}$ - - - THEN $5^{5 \mathrm{TH}}=\mathrm{N}----$

ASSIGNMENT

1 How many words can be formed out of the letters of the word TRIANGLE' ? How many of these will begin with T and end with E?

2
How many 6-digit numbers can be formed from the digits $0,1,3,5$, 7 and 9 which are divisible by 10 and no digit is repeated ?
3 Find the number of different permutations of the letters of the word BANANA.

4 How many numbers greater than $\mathbf{1 0 0 0 0 0 0}$ can be formed by using the digits $1,2,0,2,4,2,4$?
5 Letters of the word 'MOTHER' are arranged in all possible ways and the words (with or without meaning)so obtained are arranged as in a dictionary. What is the position of the word 'MOTHER' in this arrangement?
ANSWERS; (1) 8!=40320 and $6!=720$
(2) $120 \quad$ (3) $\frac{6!}{3!2!}=60$

$$
(4) 360 \quad(5) 309^{t h}
$$

THANK YOU

Stay safe

Stay blessed

